¿Cómo puedo pivotar un marco de datos?

480
  • ¿Qué es pivote?
  • ¿Cómo giro?
  • ¿Es esto un pivote?
  • ¿Formato largo a formato ancho?

He visto muchas preguntas sobre tablas dinámicas. Incluso si no saben que están preguntando sobre tablas dinámicas, por lo general lo están. Es prácticamente imposible escribir una pregunta canónica y una respuesta que abarque todos los aspectos de pivotar ...

... Pero voy a intentarlo.


El problema con las preguntas y respuestas existentes es que a menudo la pregunta se centra en un matiz que el OP tiene problemas para generalizar para utilizar varias de las buenas respuestas existentes. Sin embargo, ninguna de las respuestas intenta dar una explicación completa (porque es una tarea abrumadora)

Mira algunos ejemplos de mi búsqueda de Google

  1. ¿Cómo pivotar un marco de datos en Pandas?
  • Buena pregunta y respuesta. Pero la respuesta solo responde a la pregunta específica con poca explicación.
  1. pandas tabla dinámica a marco de datos
  • En esta pregunta, el OP se ocupa de la salida del pivote. Es decir, cómo se ven las columnas. OP quería que se pareciera a R. Esto no es muy útil para los usuarios de pandas.
  1. pandas girando un marco de datos, filas duplicadas
  • Otra pregunta decente, pero la respuesta se centra en un método, a saber pd.DataFrame.pivot

Entonces, cada vez que alguien busca pivot, obtiene resultados esporádicos que probablemente no responderán a su pregunta específica.


Configuración

Puede notar que llamé visiblemente a mis columnas y valores de columna relevantes para que se correspondan con la forma en que voy a girar en las respuestas a continuación.

import numpy as np
import pandas as pd
from numpy.core.defchararray import add

np.random.seed([3,1415])
n = 20

cols = np.array(['key', 'row', 'item', 'col'])
arr1 = (np.random.randint(5, size=(n, 4)) // [2, 1, 2, 1]).astype(str)

df = pd.DataFrame(
    add(cols, arr1), columns=cols
).join(
    pd.DataFrame(np.random.rand(n, 2).round(2)).add_prefix('val')
)
print(df)

     key   row   item   col  val0  val1
0   key0  row3  item1  col3  0.81  0.04
1   key1  row2  item1  col2  0.44  0.07
2   key1  row0  item1  col0  0.77  0.01
3   key0  row4  item0  col2  0.15  0.59
4   key1  row0  item2  col1  0.81  0.64
5   key1  row2  item2  col4  0.13  0.88
6   key2  row4  item1  col3  0.88  0.39
7   key1  row4  item1  col1  0.10  0.07
8   key1  row0  item2  col4  0.65  0.02
9   key1  row2  item0  col2  0.35  0.61
10  key2  row0  item2  col1  0.40  0.85
11  key2  row4  item1  col2  0.64  0.25
12  key0  row2  item2  col3  0.50  0.44
13  key0  row4  item1  col4  0.24  0.46
14  key1  row3  item2  col3  0.28  0.11
15  key0  row3  item1  col1  0.31  0.23
16  key0  row0  item2  col3  0.86  0.01
17  key0  row4  item0  col3  0.64  0.21
18  key2  row2  item2  col0  0.13  0.45
19  key0  row2  item0  col4  0.37  0.70

Preguntas)

  1. ¿Por qué consigo ValueError: Index contains duplicate entries, cannot reshape

  2. ¿Cómo giro de dfmanera que los colvalores sean columnas, los rowvalores sean el índice y la media de val0los valores?

     col   col0   col1   col2   col3  col4
     row
     row0  0.77  0.605    NaN  0.860  0.65
     row2  0.13    NaN  0.395  0.500  0.25
     row3   NaN  0.310    NaN  0.545   NaN
     row4   NaN  0.100  0.395  0.760  0.24
    
  3. ¿Cómo giro de dfmanera que los colvalores sean columnas, los rowvalores sean el índice, la media de val0los valores y los valores faltantes 0?

     col   col0   col1   col2   col3  col4
     row
     row0  0.77  0.605  0.000  0.860  0.65
     row2  0.13  0.000  0.395  0.500  0.25
     row3  0.00  0.310  0.000  0.545  0.00
     row4  0.00  0.100  0.395  0.760  0.24
    
  4. ¿Puedo conseguir algo más que meantal vez sum?

     col   col0  col1  col2  col3  col4
     row
     row0  0.77  1.21  0.00  0.86  0.65
     row2  0.13  0.00  0.79  0.50  0.50
     row3  0.00  0.31  0.00  1.09  0.00
     row4  0.00  0.10  0.79  1.52  0.24
    
  5. ¿Puedo hacer más de una agregación a la vez?

            sum                          mean
     col   col0  col1  col2  col3  col4  col0   col1   col2   col3  col4
     row
     row0  0.77  1.21  0.00  0.86  0.65  0.77  0.605  0.000  0.860  0.65
     row2  0.13  0.00  0.79  0.50  0.50  0.13  0.000  0.395  0.500  0.25
     row3  0.00  0.31  0.00  1.09  0.00  0.00  0.310  0.000  0.545  0.00
     row4  0.00  0.10  0.79  1.52  0.24  0.00  0.100  0.395  0.760  0.24
    
  6. ¿Puedo agregar sobre múltiples columnas de valor?

           val0                             val1
     col   col0   col1   col2   col3  col4  col0   col1  col2   col3  col4
     row
     row0  0.77  0.605  0.000  0.860  0.65  0.01  0.745  0.00  0.010  0.02
     row2  0.13  0.000  0.395  0.500  0.25  0.45  0.000  0.34  0.440  0.79
     row3  0.00  0.310  0.000  0.545  0.00  0.00  0.230  0.00  0.075  0.00
     row4  0.00  0.100  0.395  0.760  0.24  0.00  0.070  0.42  0.300  0.46
    
  7. ¿Se puede subdividir por varias columnas?

     item item0             item1                         item2
     col   col2  col3  col4  col0  col1  col2  col3  col4  col0   col1  col3  col4
     row
     row0  0.00  0.00  0.00  0.77  0.00  0.00  0.00  0.00  0.00  0.605  0.86  0.65
     row2  0.35  0.00  0.37  0.00  0.00  0.44  0.00  0.00  0.13  0.000  0.50  0.13
     row3  0.00  0.00  0.00  0.00  0.31  0.00  0.81  0.00  0.00  0.000  0.28  0.00
     row4  0.15  0.64  0.00  0.00  0.10  0.64  0.88  0.24  0.00  0.000  0.00  0.00
    
  8. O

     item      item0             item1                         item2
     col        col2  col3  col4  col0  col1  col2  col3  col4  col0  col1  col3  col4
     key  row
     key0 row0  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.86  0.00
          row2  0.00  0.00  0.37  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.50  0.00
          row3  0.00  0.00  0.00  0.00  0.31  0.00  0.81  0.00  0.00  0.00  0.00  0.00
          row4  0.15  0.64  0.00  0.00  0.00  0.00  0.00  0.24  0.00  0.00  0.00  0.00
     key1 row0  0.00  0.00  0.00  0.77  0.00  0.00  0.00  0.00  0.00  0.81  0.00  0.65
          row2  0.35  0.00  0.00  0.00  0.00  0.44  0.00  0.00  0.00  0.00  0.00  0.13
          row3  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.28  0.00
          row4  0.00  0.00  0.00  0.00  0.10  0.00  0.00  0.00  0.00  0.00  0.00  0.00
     key2 row0  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.40  0.00  0.00
          row2  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.13  0.00  0.00  0.00
          row4  0.00  0.00  0.00  0.00  0.00  0.64  0.88  0.00  0.00  0.00  0.00  0.00
    
  9. ¿Puedo agregar la frecuencia con la que la columna y las filas aparecen juntas, también conocida como "tabulación cruzada"?

     col   col0  col1  col2  col3  col4
     row
     row0     1     2     0     1     1
     row2     1     0     2     1     2
     row3     0     1     0     2     0
     row4     0     1     2     2     1
    
  10. ¿Cómo convierto un DataFrame de largo a ancho girando SOLO en dos columnas? Dado,

    np.random.seed([3, 1415])
    df2 = pd.DataFrame({'A': list('aaaabbbc'), 'B': np.random.choice(15, 8)})
    df2
       A   B
    0  a   0
    1  a  11
    2  a   2
    3  a  11
    4  b  10
    5  b  10
    6  b  14
    7  c   7
    

    Lo esperado debería verse algo así como

          a     b    c
    0   0.0  10.0  7.0
    1  11.0  10.0  NaN
    2   2.0  14.0  NaN
    3  11.0   NaN  NaN
    
  11. ¿Cómo puedo aplanar el índice múltiple a un solo índice después pivot?

    De

       1  2
       1  1  2
    a  2  1  1
    b  2  1  0
    c  1  0  0
    

    Para

       1|1  2|1  2|2
    a    2    1    1
    b    2    1    0
    c    1    0    0
    
0
379
+500

Empezamos respondiendo a la primera pregunta:

Pregunta 1

Why do I get ValueError: Index contains duplicate entries, cannot reshape

Esto ocurre porque pandas está intentando reindexar un objeto columnsu indexcon entradas duplicadas. Hay varios métodos a utilizar que pueden realizar un pivote. Algunos de ellos no se adaptan bien cuando hay duplicados de las claves en las que se le pide que gire. Por ejemplo. Considere pd.DataFrame.pivot. Sé que hay entradas duplicadas que comparten los valores rowy col:

df.duplicated(['row', 'col']).any()

True

Entonces cuando pivotuso

df.pivot(index='row', columns='col', values='val0')

Recibo el error mencionado anteriormente. De hecho, obtengo el mismo error cuando intento realizar la misma tarea con:

df.set_index(['row', 'col'])['val0'].unstack()

Aquí hay una lista de modismos que podemos usar para pivotar

  1. pd.DataFrame.groupby + pd.DataFrame.unstack

    • Buen enfoque general para realizar casi cualquier tipo de pivote
    • Especifica todas las columnas que constituirán los niveles de fila pivotada y los niveles de columna en un grupo por. Siga eso seleccionando las columnas restantes que desea agregar y las funciones que desea realizar la agregación. Por último, tienes unstacklos niveles que quieres que estén en el índice de la columna.
  2. pd.DataFrame.pivot_table

    • Una versión glorificada de groupbycon una API más intuitiva. Para muchas personas, este es el enfoque preferido. Y es el enfoque previsto por los desarrolladores.
    • Especifique el nivel de fila, los niveles de columna, los valores que se agregarán y las funciones para realizar agregaciones.
  3. pd.DataFrame.set_index + pd.DataFrame.unstack

    • Conveniente e intuitivo para algunos (incluido yo mismo). No se pueden manejar claves agrupadas duplicadas.
    • De manera similar al groupbyparadigma, especificamos todas las columnas que eventualmente serán niveles de fila o columna y las establecemos como índice. Seguimos unstacklos niveles que queramos en las columnas. Si los niveles de índice o los niveles de columna restantes no son únicos, este método fallará.
  4. pd.DataFrame.pivot

    • Muy similar a set_indexque comparte la limitación de la clave duplicada. La API también es muy limitada. Sólo toma valores escalares para index, columns, values.
    • Similar al pivot_tablemétodo en que seleccionamos filas, columnas y valores sobre los que pivotar. Sin embargo, no podemos agregar y si las filas o columnas no son únicas, este método fallará.
  5. pd.crosstab

    • Esta es una versión especializada pivot_tabley en su forma más pura es la forma más intuitiva de realizar varias tareas.
  6. pd.factorize + np.bincount

    • Esta es una técnica muy avanzada que es muy oscura pero muy rápida. No se puede usar en todas las circunstancias, pero cuando se pueda usar y se sienta cómodo usándolo, obtendrá las recompensas de rendimiento.
  7. pd.get_dummies + pd.DataFrame.dot

    • Lo uso para realizar tabulaciones cruzadas de forma inteligente.

Ejemplos de

Lo que voy a hacer para cada respuesta y pregunta subsiguientes es responder usando pd.DataFrame.pivot_table. Luego te brindaré alternativas para realizar la misma tarea.

Pregunta 3

How do I pivot df such that the col values are columns, row values are the index, mean of val0 are the values, and missing values are 0?

  • pd.DataFrame.pivot_table

    • fill_valueno está configurado de forma predeterminada. Tiendo a configurarlo apropiadamente. En este caso lo configuré en 0. Observe que me salté la pregunta 2 porque es la misma que esta respuesta sin elfill_value

    • aggfunc='mean'es el predeterminado y no tuve que configurarlo. Lo incluí para ser explícito.

          df.pivot_table(
              values='val0', index='row', columns='col',
              fill_value=0, aggfunc='mean')
      
          col   col0   col1   col2   col3  col4
          row
          row0  0.77  0.605  0.000  0.860  0.65
          row2  0.13  0.000  0.395  0.500  0.25
          row3  0.00  0.310  0.000  0.545  0.00
          row4  0.00  0.100  0.395  0.760  0.24
      
  • pd.DataFrame.groupby

      df.groupby(['row', 'col'])['val0'].mean().unstack(fill_value=0)
    
  • pd.crosstab

      pd.crosstab(
          index=df['row'], columns=df['col'],
          values=df['val0'], aggfunc='mean').fillna(0)
    

Pregunta 4

Can I get something other than mean, like maybe sum?

  • pd.DataFrame.pivot_table

      df.pivot_table(
          values='val0', index='row', columns='col',
          fill_value=0, aggfunc='sum')
    
      col   col0  col1  col2  col3  col4
      row
      row0  0.77  1.21  0.00  0.86  0.65
      row2  0.13  0.00  0.79  0.50  0.50
      row3  0.00  0.31  0.00  1.09  0.00
      row4  0.00  0.10  0.79  1.52  0.24
    
  • pd.DataFrame.groupby

      df.groupby(['row', 'col'])['val0'].sum().unstack(fill_value=0)
    
  • pd.crosstab

      pd.crosstab(
          index=df['row'], columns=df['col'],
          values=df['val0'], aggfunc='sum').fillna(0)
    

Pregunta 5

Can I do more that one aggregation at a time?

Tenga en cuenta que para pivot_tabley crosstabyo necesitaba pasar la lista de personas que se pueden llamar. Por otro lado, groupby.agges capaz de tomar cadenas para un número limitado de funciones especiales. groupby.aggtambién habría tomado los mismos invocables que pasamos a los demás, pero a menudo es más eficiente aprovechar los nombres de las funciones de cadena ya que hay eficiencias que se pueden obtener.

  • pd.DataFrame.pivot_table

      df.pivot_table(
          values='val0', index='row', columns='col',
          fill_value=0, aggfunc=[np.size, np.mean])
    
           size                      mean
      col  col0 col1 col2 col3 col4  col0   col1   col2   col3  col4
      row
      row0    1    2    0    1    1  0.77  0.605  0.000  0.860  0.65
      row2    1    0    2    1    2  0.13  0.000  0.395  0.500  0.25
      row3    0    1    0    2    0  0.00  0.310  0.000  0.545  0.00
      row4    0    1    2    2    1  0.00  0.100  0.395  0.760  0.24
    
  • pd.DataFrame.groupby

      df.groupby(['row', 'col'])['val0'].agg(['size', 'mean']).unstack(fill_value=0)
    
  • pd.crosstab

      pd.crosstab(
          index=df['row'], columns=df['col'],
          values=df['val0'], aggfunc=[np.size, np.mean]).fillna(0, downcast='infer')
    

Pregunta 6

Can I aggregate over multiple value columns?

  • pd.DataFrame.pivot_tablepasamos values=['val0', 'val1']pero podríamos haber dejado eso por completo

      df.pivot_table(
          values=['val0', 'val1'], index='row', columns='col',
          fill_value=0, aggfunc='mean')
    
            val0                             val1
      col   col0   col1   col2   col3  col4  col0   col1  col2   col3  col4
      row
      row0  0.77  0.605  0.000  0.860  0.65  0.01  0.745  0.00  0.010  0.02
      row2  0.13  0.000  0.395  0.500  0.25  0.45  0.000  0.34  0.440  0.79
      row3  0.00  0.310  0.000  0.545  0.00  0.00  0.230  0.00  0.075  0.00
      row4  0.00  0.100  0.395  0.760  0.24  0.00  0.070  0.42  0.300  0.46
    
  • pd.DataFrame.groupby

      df.groupby(['row', 'col'])['val0', 'val1'].mean().unstack(fill_value=0)
    

Pregunta 7

Can Subdivide by multiple columns?

  • pd.DataFrame.pivot_table

      df.pivot_table(
          values='val0', index='row', columns=['item', 'col'],
          fill_value=0, aggfunc='mean')
    
      item item0             item1                         item2
      col   col2  col3  col4  col0  col1  col2  col3  col4  col0   col1  col3  col4
      row
      row0  0.00  0.00  0.00  0.77  0.00  0.00  0.00  0.00  0.00  0.605  0.86  0.65
      row2  0.35  0.00  0.37  0.00  0.00  0.44  0.00  0.00  0.13  0.000  0.50  0.13
      row3  0.00  0.00  0.00  0.00  0.31  0.00  0.81  0.00  0.00  0.000  0.28  0.00
      row4  0.15  0.64  0.00  0.00  0.10  0.64  0.88  0.24  0.00  0.000  0.00  0.00
    
  • pd.DataFrame.groupby

      df.groupby(
          ['row', 'item', 'col']
      )['val0'].mean().unstack(['item', 'col']).fillna(0).sort_index(1)
    

Pregunta 8

Can Subdivide by multiple columns?

  • pd.DataFrame.pivot_table

      df.pivot_table(
          values='val0', index=['key', 'row'], columns=['item', 'col'],
          fill_value=0, aggfunc='mean')
    
      item      item0             item1                         item2
      col        col2  col3  col4  col0  col1  col2  col3  col4  col0  col1  col3  col4
      key  row
      key0 row0  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.86  0.00
           row2  0.00  0.00  0.37  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.50  0.00
           row3  0.00  0.00  0.00  0.00  0.31  0.00  0.81  0.00  0.00  0.00  0.00  0.00
           row4  0.15  0.64  0.00  0.00  0.00  0.00  0.00  0.24  0.00  0.00  0.00  0.00
      key1 row0  0.00  0.00  0.00  0.77  0.00  0.00  0.00  0.00  0.00  0.81  0.00  0.65
           row2  0.35  0.00  0.00  0.00  0.00  0.44  0.00  0.00  0.00  0.00  0.00  0.13
           row3  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.28  0.00
           row4  0.00  0.00  0.00  0.00  0.10  0.00  0.00  0.00  0.00  0.00  0.00  0.00
      key2 row0  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.40  0.00  0.00
           row2  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.13  0.00  0.00  0.00
           row4  0.00  0.00  0.00  0.00  0.00  0.64  0.88  0.00  0.00  0.00  0.00  0.00
    
  • pd.DataFrame.groupby

      df.groupby(
          ['key', 'row', 'item', 'col']
      )['val0'].mean().unstack(['item', 'col']).fillna(0).sort_index(1)
    
  • pd.DataFrame.set_index porque el conjunto de claves es único tanto para filas como para columnas

      df.set_index(
          ['key', 'row', 'item', 'col']
      )['val0'].unstack(['item', 'col']).fillna(0).sort_index(1)
    

Pregunta 9

Can I aggregate the frequency in which the column and rows occur together, aka "cross tabulation"?

  • pd.DataFrame.pivot_table

      df.pivot_table(index='row', columns='col', fill_value=0, aggfunc='size')
    
          col   col0  col1  col2  col3  col4
      row
      row0     1     2     0     1     1
      row2     1     0     2     1     2
      row3     0     1     0     2     0
      row4     0     1     2     2     1
    
  • pd.DataFrame.groupby

      df.groupby(['row', 'col'])['val0'].size().unstack(fill_value=0)
    
  • pd.crosstab

      pd.crosstab(df['row'], df['col'])
    
  • pd.factorize + np.bincount

      # get integer factorization `i` and unique values `r`
      # for column `'row'`
      i, r = pd.factorize(df['row'].values)
      # get integer factorization `j` and unique values `c`
      # for column `'col'`
      j, c = pd.factorize(df['col'].values)
      # `n` will be the number of rows
      # `m` will be the number of columns
      n, m = r.size, c.size
      # `i * m + j` is a clever way of counting the
      # factorization bins assuming a flat array of length
      # `n * m`.  Which is why we subsequently reshape as `(n, m)`
      b = np.bincount(i * m + j, minlength=n * m).reshape(n, m)
      # BTW, whenever I read this, I think 'Bean, Rice, and Cheese'
      pd.DataFrame(b, r, c)
    
            col3  col2  col0  col1  col4
      row3     2     0     0     1     0
      row2     1     2     1     0     2
      row0     1     0     1     2     1
      row4     2     2     0     1     1
    
  • pd.get_dummies

      pd.get_dummies(df['row']).T.dot(pd.get_dummies(df['col']))
    
            col0  col1  col2  col3  col4
      row0     1     2     0     1     1
      row2     1     0     2     1     2
      row3     0     1     0     2     0
      row4     0     1     2     2     1
    

Pregunta 10

How do I convert a DataFrame from long to wide by pivoting on ONLY two columns?

  • DataFrame.pivot

    El primer paso es asignar un número a cada fila; este número será el índice de fila de ese valor en el resultado pivotado. Esto se hace usando GroupBy.cumcount:

      df2.insert(0, 'count', df2.groupby('A').cumcount())
      df2
    
         count  A   B
      0      0  a   0
      1      1  a  11
      2      2  a   2
      3      3  a  11
      4      0  b  10
      5      1  b  10
      6      2  b  14
      7      0  c   7
    

    El segundo paso es utilizar la columna recién creada como índice para llamar DataFrame.pivot.

      df2.pivot(*df2)
      # df2.pivot(index='count', columns='A', values='B')
    
      A         a     b    c
      count
      0       0.0  10.0  7.0
      1      11.0  10.0  NaN
      2       2.0  14.0  NaN
      3      11.0   NaN  NaN
    
  • DataFrame.pivot_table

    Mientras que DataFrame.pivotsolo acepta columnas, DataFrame.pivot_tabletambién acepta matrices, por lo que GroupBy.cumcountse puede pasar directamente como indexsin crear una columna explícita.

      df2.pivot_table(index=df2.groupby('A').cumcount(), columns='A', values='B')
    
      A         a     b    c
      0       0.0  10.0  7.0
      1      11.0  10.0  NaN
      2       2.0  14.0  NaN
      3      11.0   NaN  NaN
    

Pregunta 11

How do I flatten the multiple index to single index after pivot

Si columnsescribe objectcon cadenajoin

df.columns = df.columns.map('|'.join)

demás format

df.columns = df.columns.map('{0[0]}|{0[1]}'.format)
8
  • 53
    ¿Podría considerar la posibilidad de ampliar los documentos oficiales ?
    MaxU
    15/12/2017 a las 10:31
  • ¿Qué pasó con la respuesta a la Pregunta # 10? Yo entiendo KeyError: 'A'. ¿Hay más en la respuesta? 27/09/19 a las 18:06
  • @MonicaHeddneck Lo revisaré nuevamente y lo actualizaré si es necesario. Sin embargo, 'A'se supone que hay una columna 'A'en su marco de datos para agrupar. 27/09/19 a las 20:19
  • 2
    no es necesario insertar la columna en la pregunta 10, se puede pasar directamente como argumento en la tabla dinámica
    ansev
    1 abr.20 a las 18:03
  • 1
    @MonicaHeddneck Creo que las referencias a dfdeberían cambiarse a df2. Si lo estaba siguiendo como yo, se dfcreó el marco de datos anterior. 14 abr.20 a las 6:16
14

Para extender la respuesta de @ piRSquared, otra versión de la Pregunta 10

Pregunta 10.1

Marco de datos:

d = data = {'A': {0: 1, 1: 1, 2: 1, 3: 2, 4: 2, 5: 3, 6: 5},
 'B': {0: 'a', 1: 'b', 2: 'c', 3: 'a', 4: 'b', 5: 'a', 6: 'c'}}
df = pd.DataFrame(d)

   A  B
0  1  a
1  1  b
2  1  c
3  2  a
4  2  b
5  3  a
6  5  c

Producción:

   0     1     2
A
1  a     b     c
2  a     b  None
3  a  None  None
5  c  None  None

Usando df.groupbyypd.Series.tolist

t = df.groupby('A')['B'].apply(list)
out = pd.DataFrame(t.tolist(),index=t.index)
out
   0     1     2
A
1  a     b     c
2  a     b  None
3  a  None  None
5  c  None  None

O una alternativa mucho mejor usando pd.pivot_tablecondf.squeeze.

t = df.pivot_table(index='A',values='B',aggfunc=list).squeeze()
out = pd.DataFrame(t.tolist(),index=t.index)
0
4

Para comprender mejor cómo funciona pivot , puede ver el ejemplo de la documentación de Pandas:

ingrese la descripción de la imagen aquí

df = pd.DataFrame({
    'foo': ['one', 'one', 'one', 'two', 'two', 'two'],
    'bar': ['A', 'B', 'C', 'A', 'B', 'C'],
    'baz': [1, 2, 3, 4, 5, 6],
    'zoo': ['x', 'y', 'z', 'q', 'w', 't']
})

Tabla de entrada:

   foo bar  baz zoo
0  one   A    1   x
1  one   B    2   y
2  one   C    3   z
3  two   A    4   q
4  two   B    5   w
5  two   C    6   t

Pivote :

pd.pivot(
    data=df,        
    index='foo',    # Column to use to make new frame’s index. If None, uses existing index.
    columns='bar',  # Column to use to make new frame’s columns.
    values='baz'    # Column(s) to use for populating new frame’s values.
)

Tabla de salida:

bar  A  B  C
foo         
one  1  2  3
two  4  5  6
0